Tuesday, February 24, 2009

Superorganisms (the incredible feats of the ant)

Kottke directed me the New York Review of Books article on EO Wilson and Bert Hölldobler's new book Superorganisms. This article is so fascinating I can't even imagine how good this book is. Some highlights:

On what exactly a superorganism is...
"In explaining what a superorganism is, Hölldobler and Wilson draw up a useful set of "functional parallels" between an organism (such as ourselves) and the superorganism that is an ant colony. The individual ants, they say, function like cells in our body, an observation that's given more piquancy when we realize that, like many of our cells, individual ants are extremely short-lived. Depending upon the species, between 1 and 10 percent of the entire worker population of a colony dies each day, and in some species nearly half of the ants that forage outside the nest die daily. The specialized ant castes—such as workers, soldiers, and queens—correspond, they say, to our organs; and the queen ant, which in some instances never moves, but which can lay twenty eggs every minute for all of her decade-long life, is the equivalent of our gonads."
On similarities and differences between humans and ant "superorganisms"
Parallels between the ants and ourselves are striking for the light they shed on the nature of everyday human experiences. Some ants get forced into low-status jobs and are prevented from becoming upwardly mobile by other members of the colony. Garbage dump workers, for example, are confined to their humble and dangerous task of removing rubbish from the nest by other ants who respond aggressively to the odors that linger on the garbage workers' bodies...

However, ants clearly are fundamentally different from us. A whimsical example concerns the work of ant morticians, which recognize ant corpses purely on the basis of the presence of a product of decomposition called oleic acid. When researchers daub live ants with the acid, they are promptly carried off to the ant cemetery by the undertakers, despite the fact that they are alive and kicking. Indeed, unless they clean themselves very thoroughly they are repeatedly dragged to the mortuary, despite showing every other sign of life.

The means that ants use to find their way in the world are fascinating. It has recently been found that ant explorers count their steps to determine where they are in relation to home. This remarkable ability was discovered by researchers who lengthened the legs of ants by attaching stilts to them. The stilt-walking ants, they observed, became lost on their way home to the nest at a distance proportionate to the length of their stilts.

And the most amazing part of the article on the "attines" the most advanced species, mindblowing!

The progress of ants from this relatively primitive state to the complexity of the most finely tuned superorganisms leaves no doubt that the progress of human evolution has largely followed a path taken by the ants tens of millions of years earlier. Beginning as simple hunter-gatherers, some ants have learned to herd and milk bugs, just as we milk cattle and sheep. There are ants that take slaves, ants that lay their eggs in the nests of foreign ants (much like cuckoos do among birds), leaving the upbringing of their young to others, and there are even ants that have discovered agriculture. These agricultural ants represent the highest level of ant civilization, yet it is not plants that they cultivate, but mushrooms. These mushroom farmers are known as attines, and they are found only in the New World. Widely known as leafcutter ants, they are doubtless familiar from wildlife documentaries....

You may not believe it, but like the sailors of old the leafcutter ants "sing" as they work. Leaf-cutting is every bit as strenuous for the ants as hauling an anchor is for human beings, and their singing, which takes the form of stridulation (a sound created by the rubbing together of body parts), assists the ants in their work by imparting vibrations to the mandible that is cutting the leaf, enhancing its action in a manner akin to the way an electric knife helps us cut roasts. The leafcutters also use stridulation to cry for help, for example when workers are trapped in an underground cave-in. These cries for help soon prompt other ants to rush in and begin digging until they've reached their trapped sisters.

The fungus farmed by the leafcutter ants grows in underground chambers whose temperature, humidity, and acidity are precisely regulated to optimize its growth. The fungus, which produces a tiny mushroom, grows nowhere else, and genetic studies reveal that various attine ant species have been cultivating the same fungus strain for millions of years. In truth, after tens of millions of years of coevolution such is their interdependence that the ants cannot live without the fungus, nor the fungus without the ants. The system is not perfect, however, for the ants' fungal gardens are occasionally devastated by pests. One of the worst is an invasive fungus known as Escovopsis, whose depredations can become so severe that the leafcutters must desert their hard-won gardens and start elsewhere anew. Often a colony so beset evicts a smaller attine colony, taking over the premises and enlarging them to suit.


Friday, February 20, 2009

try, fail, try, fail, eventually, you'll get it right

I keep seeing story after story of the value of simply doing rather than thinking about doing.

Here's two from the past three days:

http://cstadvertising.com/blog/2009/02/18/do-it-then-fix-it/

http://www.kottke.org/09/02/art-and-fear

I hope that I'm doing enough of this